Purpose of review: Circular RNAs (circRNAs) are RNA transcripts derived from fragments of pre-messenger RNAs through a back-splicing process. An advantage that rises from their circular covalently closed conformation is their high stability, when compared with their linear counterparts. The current review focuses on the emerging roles of circRNAs in osteoporosis, including in osteogenic differentiation and osteoclastogenesis. Their potential as osteoporosis biomarkers will also be discussed.
Recent findings: Although firstly described as non-coding, some of these single-stranded RNAs were recently reported to possess protein-coding capacity. On the other hand, the circRNAs exhibit cell and tissue-specific patterns at the transcriptome level in eukaryotes and are regulated throughout the development or disease progression. Even though thousands of these circular transcripts are listed and annotated, only a limited number of studies describe their biological role in bone processes. Recent evidence indicates inhibitory activator roles in both osteoblasts and osteoclasts differentiation and function. Latest screenings in the blood, plasma, or serum of osteoporosis patients support the potential for circRNA signature to be used as biomarkers in osteoporosis, but further validation is required. While intense research into circRNAs has been detailing their biological roles, there remains a need for standardization and further research to fulfil the future potential of this emerging and highly promising class of regulatory molecules.
Keywords: Bone; Osteoclastogenesis; Osteogenic differentiation; Transcriptome.
© 2023. The Author(s).