Hollow multishell structures exercise temporal-spatial ordering and dynamic smart behaviour

Nat Rev Chem. 2020 Mar;4(3):159-168. doi: 10.1038/s41570-020-0161-8. Epub 2020 Feb 11.

Abstract

A hollow multishell structure (HoMS) is an assembly of multiple shells with voids between the individual shells. Accessible through nanopores, these voids represent separate reaction environments in the same assembly, such that HoMSs have unique properties that are applicable to diverse fields. These applications have mostly exploited the large specific surface area, high loading capacity and/or buffering effect of HoMSs, benefiting the mass/energy transmission and effective surface area. In comparison, the temporal-spatial ordering of reactions, as well as the dynamic smart behaviour of HoMSs, have been less explored but are also emphasized in this Perspective. We first describe the synthesis of HoMSs and the thermodynamic and kinetic aspects of their formation. We then consider the composition and structural functionalization of each shell within a HoMS and then highlight how these enable applications based on temporal-spatial ordering and dynamic smart behaviour.

Publication types

  • Review