Graft-versus-leukemia (GvL) effects are critical to prevent relapses after allogeneic hematopoietic cell transplantation (allo-HCT). However, the success of allo-HCT is limited by graft-versus-host disease (GvHD). Both, CD4+ and CD8+ T cells contribute to GvHD and GvL. The sphingosine-1-phosphate receptor (S1PR) signaling plays a crucial role in lymphocyte trafficking. Mocravimod is an S1PR modulator and its administration leads to blocking lymphocyte egress from lymphoid organs. We hypothesized that this applies to the bone marrow (BM) too, and analyzed BM biopsies from the clinical study with mocravimod (phase I trial in allo-HCT patients; NCT01830010) by immunohistochemical staining for CD3, CD4, CD8, TIA1, FoxP3, PD1, T-Bet, GATA3, and ROR-γt to identify and quantify T cell subsets in situ. Allo-HCT patients without receiving mocravimod were used as controls. BM from 9 patients in the mocravimod group and 10 patients in the control group were examined. CD3+ T cells were found to accumulate in the BM of mocravimod-treated patients compared to controls, both on day 30 and 90 post-transplant. The effect was stronger for CD4+ T cells, than CD8+ T cells, which is in line with data from murine studies showing that CD4+ T cells are more sensitive to mocravimod treatment than CD8+ T cells. Clinically-relevant acute GvHD events (grade II-IV) were slightly lower, but comparable to controls when mocravimod was administered. Taken together, data are supportive of mocravimod's mode of action and bring additional evidence of fewer relapses for allo-HCT patients treated with S1PR modulators.
Keywords: Allogeneic hematopoietic cell transplantation; Bone marrow biopsies; Graft-versus-host disease; Mocravimod; Sphingosine-1-phosphate receptor; T cells.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.