PFAS adsorbent selection: The role of adsorbent use rate, water quality, and cost

J Hazard Mater. 2023 Jul 15:454:131481. doi: 10.1016/j.jhazmat.2023.131481. Epub 2023 Apr 26.

Abstract

Per- and polyfluoroalkyl substance (PFAS) contamination in aqueous matrices has intensified the search for PFAS adsorbents with elevated capacity, selectivity, and cost effectiveness. A novel surface modified organoclay (SMC) adsorbent was evaluated for PFAS removal performance in parallel with granular activated carbon (GAC) and ion exchange resin (IX) for the treatment of five distinct PFAS impaired waters including groundwater, landfill leachate, membrane concentrate and wastewater effluent. Rapid small scale column tests (RSSCTs) and breakthrough modeling were coupled to provide insight on adsorbent performance and cost for multiple PFAS and water types. IX exhibited the best performance with respect to adsorbent use rates in treatment of all tested waters. IX was nearly four times more effective than GAC and two times more effective than SMC in the treatment of PFOA from water types excluding groundwater. Employed modeling strengthened the comparison of adsorbent performance and water quality to infer adsorption feasibility. Further, evaluation of adsorption was extended beyond PFAS breakthrough with the inclusion of unit adsorbent cost as a decision metric influencing adsorbent selection. An analysis of levelized media cost indicated treatment of landfill leachate and membrane concentrate was at least three times more expensive than groundwaters or wastewaters evaluated.

Keywords: GAC; Ion Exchange; RSSCT; Surface Modified Clay.