Some Bacillus thuringiensis (Bt) strains are used as pesticide agent. This species belongs to Bacillus cereus (Bc) group which contains many species with a high phenotypic diversity, and could be pathogenic like B. cereus. The aim of this study was to characterize the phenotype of 90 strains belonging to Bc group, half of which were Bt. Knowing that Bt strains belong to different phylogenetic Bc groups, do Bt strains have the same phenotype than other Bc group strains? Five phenotypic parameters were estimated for 90 strains in the Bc group, of which 43 were Bt strains: minimal, maximal and optimal growth temperature, cytotoxicity on Caco-2 cells, heat resistance of spores. The dataset was processed by principal component analysis, showing that 53% of the variance of the profiles corresponded to factors linked to growth, heat resistance and cytotoxicity. The phenotype followed the phylogenetic groups based on panC. Bt strains showed similar behavior to other strains in the Bc group, in our experimental conditions. Commercial bio-insecticide strains were mesophilic with low heat resistance.
Keywords: Bioinsecticide; Food safety; Organic agriculture; Organic plant protection; Physiological diversity.
Copyright © 2023 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.