Epilepsy is a prevalent condition characterized by recurrent, unpredictable seizures. Monitoring with surface electroencephalography (EEG) is the gold standard for diagnosing epilepsy, but a time-consuming, uncomfortable and sometimes ineffective process for patients. Further, using EEG over a brief monitoring period has variable success, dependent on patient tolerance and seizure frequency. The availability of hospital resources and hardware and software specifications inherently restrict the options for comfortable, long-term data collection, resulting in limited data for training machine-learning models. This mini-review examines the current patient journey, providing an overview of the current state of EEG monitoring with reduced electrodes and automated channel reduction methods. Opportunities for improving data reliability through multi-modal data fusion are suggested. We assert the need for further research in electrode reduction to advance brain monitoring solutions towards portable, reliable devices that simultaneously offer patient comfort, perform ultra-long-term monitoring and expedite the diagnosis process.
Keywords: electrode; electroencephalogram; epilepsy; machine learning; patient care; seizure detection.
© 2023 The Authors.