People with schizophrenia experience difficulties with social interactions. One contributor to these social deficits is dysfunction in processing facial features and facial emotional expressions. However, it is not known whether face processing deficits are evident in those with other psychotic disorders or in those genetically at-risk for psychosis (i.e., first-degree relatives of those with psychosis). We assessed event-related potentials (ERPs) during a facial and emotion processing task in 100 people with a diagnosis of schizophrenia or another psychotic condition (PSY), 32 of their siblings (SIB) and 45 healthy comparison participants (CTL). In separate blocks, participants identified the sex (male or female) or emotion (happy, angry, neutral) of faces. In a comparison condition, participants indicated whether buildings had one or two floors. ERPs were examined in two stages. First, we compared ERPs across the emotion, sex and building identification conditions. Second, we compared ERPs among the three different facial emotions. PSY exhibited significantly lower amplitudes over parietal-occipital regions between 111 and 151 ms when viewing faces but not buildings than CTL, consistent with a face-selective N170 ERP component deficit. The SIB group was intermediate for faces, but not significantly different than PSY or CTL. During emotion identification, all three groups showed increased N170 amplitudes to angry and happy versus neutral expressions, with no group differences. In follow up analyses, we examined differences between PSY with or without affective psychosis, and differences between those with schizophrenia versus other psychotic disorders; there were no significant differences in these analyses. Face processing deficits assessed with ERPs were observed in a group of diverse psychotic disorders, though deficits were not seen to be modulated by facial emotion expression. Additionally, N170 deficits are not evident in siblings of those with PSY.
Keywords: ERP; affect processing; face processing; psychosis; siblings.
© 2023 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.