Application of an artificial intelligence ensemble for detection of important secondary findings on lung ventilation and perfusion SPECT-CT

Clin Imaging. 2023 Aug:100:24-29. doi: 10.1016/j.clinimag.2023.04.015. Epub 2023 May 2.

Abstract

Rationale: Single-photon-emission-computerized-tomography/computed-tomography(SPECT/CT) is commonly used for pulmonary disease. Scant work has been done to determine ability of AI for secondary findings using low-dose-CT(LDCT) attenuation correction series of SPECT/CT.

Methods: 120 patients with ventilation-perfusion-SPECT/CT from 9/1/21-5/1/22 were included in this retrospective study. AI-RAD companion(VA10A,Siemens-Healthineers, Erlangen, Germany), an ensemble of deep-convolutional-neural-networks was evaluated for the detection of pulmonary nodules, coronary artery calcium, aortic ectasia/aneurysm, and vertebral height loss. Accuracy, sensitivity, specificity was measured for the outcomes. Inter-rater reliability were measured. Inter-rater reliability was measured using the intraclass correlation coefficient (ICC) by comparing the number of nodules identified by the AI to radiologist.

Results: Overall per-nodule accuracy, sensitivity, and specificity for detection of lung nodules were 0.678(95%CI 0.615-0.732), 0.956(95%CI 0.900-0.985), and 0.456(95%CI 0.376-0.543), respectively, with an intraclass correlation coefficient (ICC) between AI and radiologist of 0.78(95%CI 0.71-0.83). Overall per-patient accuracy for AI detection of coronary artery calcium, aortic ectasia/aneurysm, and vertebral height loss was 0.939(95%CI 0.878-0.975), 0.974(95%CI 0.925-0.995), and 0.857(95%CI 0.781-0.915), respectively. Sensitivity for coronary artery calcium, aortic ectasia/aneurysm, and vertebral height loss was 0.898(95%CI 0.778-0.966), 1 (95%CI 0.958-1), and 1 (95%CI 0.961-1), respectively. Specificity for coronary artery calcium, aortic ectasia/aneurysm, and vertebral height loss was 0.969(95% CI 0.893-0.996), 0.897 (95% CI 0.726-0.978), and 0.346 (95% CI 0.172-0.557), respectively.

Conclusion: AI ensemble was accurate for coronary artery calcium and aortic ectasia/aneurysm, while sensitive for aortic ectasia/aneurysm, lung nodules and vertebral height loss on LDCT attenuation correction series of SPECT/CT.

Keywords: AI; Artificial intelligence; Deep learning; Nuclear medicine; SPECT/CT; Thoracic imaging.

MeSH terms

  • Artificial Intelligence*
  • Calcium*
  • Dilatation, Pathologic
  • Humans
  • Lung
  • Perfusion
  • Reproducibility of Results
  • Retrospective Studies
  • Tomography, Emission-Computed, Single-Photon
  • Tomography, X-Ray Computed

Substances

  • Calcium