Purpose: The aim of this study was to understand the serum metabolomic signatures of moderate-to-vigorous physical activity (MVPA) and sedentary behavior, and further associate their metabolomic signatures with incident cardiometabolic diseases.
Methods: This analysis included 2711 US Hispanics/Latinos from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) aged 18-74 yr (2008-2011). An untargeted, liquid chromatography-mass spectrometry was used to profile the serum metabolome. The associations of metabolites with accelerometer-measured MVPA and sedentary time were examined using survey linear regressions adjusting for covariates. The weighted correlation network analysis identified modules of correlated metabolites in relation to sedentary time, and the modules were associated with incident diabetes, dyslipidemia, and hypertension over the 6-yr follow-up.
Results: Of 624 metabolites, 5 and 102 were associated with MVPA and sedentary behavior at false discovery rate (FDR) <0.05, respectively, after adjusting for socioeconomic and lifestyle factors. The weighted correlation network analysis identified 8 modules from 102 metabolites associated with sedentary time. Four modules (branched-chain amino acids, erythritol, polyunsaturated fatty acid, creatine) were positively, and the other four (acyl choline, plasmalogen glycerol phosphatidyl choline, plasmalogen glycerol phosphatidyl ethanolamine, urea cycle) were negatively correlated with sedentary time. Among these modules, a higher branched-chain amino acid score and a lower plasmalogen glycerol phosphatidyl choline score were associated with increased risks of diabetes and dyslipidemia. A higher erythritol score was associated with an increased risk of diabetes, and a lower acyl choline score was linked to an increased risk of hypertension.
Conclusions: In this study of US Hispanics/Latinos, we identified multiple serum metabolomic signatures of sedentary behavior and their associations with risk of incident diabetes, hypertension, and dyslipidemia. These findings suggest a potential role of circulating metabolites in the links between sedentary behavior and cardiometabolic diseases.
Copyright © 2023 by the American College of Sports Medicine.