Current-biased Josephson junctions exhibit hysteretic transitions between dissipative and superconducting states as characterized by switching and retrapping currents. Here, we develop a theory for diodelike effects in the switching and retrapping currents of weakly damped Josephson junctions. We find that while the diodelike behavior of switching currents is rooted in asymmetric current-phase relations, nonreciprocal retrapping currents originate in asymmetric quasiparticle currents. These different origins also imply distinctly different symmetry requirements. We illustrate our results by a microscopic model for junctions involving a single magnetic atom. Our theory provides significant guidance in identifying the microscopic origin of nonreciprocities in Josephson junctions.