The Electrodegradation Process in PZT Ceramics under Exposure to Cosmic Environmental Conditions

Molecules. 2023 Apr 22;28(9):3652. doi: 10.3390/molecules28093652.

Abstract

Long-time electric field action on perovskite piezoelectric ceramic leads to chemical degradation. A new way to accelerate the degradation is the exposure of the ceramic to DC electric fields under a vacuum. A high-quality commercial piezoelectric material based on PbZr1-xTixO3 is used to study such impacts. To avoid the influence of ferroelectric properties and possible removal of oxygen and lead oxides during the degradation process, the experiments are in the temperature interval of 500 °C > T > TC. Changes in resistance during the electrodegradation process is an electrically-induced deoxidation, transforming the ceramic into a metallic-like material. This occurs with an extremely low concentration of effused oxygen of 1016 oxygen atoms per 1 cm3. Due to this concentration not obeying the Mott criterion for an isolator-metal transition, it is stated that the removal of oxygen mostly occurs along the grain boundaries. It agrees with the first-principle calculations regarding dislocations with oxygen vacancies. The decrease in resistivity during electrodegradation follows a power law and is associated with a decrease in the dislocation dimension. The observed reoxidation process is a lifeline for the reconstructing (self-healing) properties of electro-degraded ceramics in harsh cosmic conditions. Based on all of these investigations, a macroscopic and nanoscopic model of the electrodegradation is presented.

Keywords: DFT calculations; PZT ceramics; dislocations; electrodegradation; grain boundaries; oxygen effusion; oxygen vacancies.

Grants and funding

The research activities were co-financed by funds granted under the Research Excellence Initiative of the University of Silesia in Katowice.