Hypericin, one of the major antidepressant constituents of St. John's wort, was shown to exert antidepressant effects by affecting cerebral CYP enzymes, serotonin homeostasis, and neuroinflammatory signaling pathways. However, its exact mechanisms are unknown. Previous clinical studies reported that the mRNA modification N6-methyladenosine (m6A) interferes with the neurobiological mechanism in depressed patients, and it was also found that the antidepressant efficacy of tricyclic antidepressants (TCAs) is related to m6A modifications. Therefore, we hypothesize that the antidepressant effect of hypericin may relate to the m6A modification of epitranscriptomic regulation. We constructed a UCMS mouse depression model and found that hypericin ameliorated depressive-like behavior in UCMS mice. Molecular pharmacology experiments showed that hypericin treatment upregulated the expression of m6A-modifying enzymes METTL3 and WTAP in the hippocampi of UCMS mice. Next, we performed MeRIP-seq and RNA-seq to study m6A modifications and changes in mRNA expression on a genome-wide scale. The genome-wide m6A assay and MeRIP-qPCR results revealed that the m6A modifications of Akt3, Ntrk2, Braf, and Kidins220 mRNA were significantly altered in the hippocampi of UCMS mice after stress stimulation and were reversed by hypericin treatment. Transcriptome assays and qPCR results showed that the Camk4 and Arhgdig genes might be related to the antidepressant efficacy of hypericin. Further gene enrichment results showed that the differential genes were mainly involved in neurotrophic factor signaling pathways. In conclusion, our results show that hypericin upregulates m6A methyltransferase METTL3 and WTAP in the hippocampi of UCMS mice and stabilizes m6A modifications to exert antidepressant effects via the neurotrophin signaling pathway. This suggests that METTL3 and WTAP-mediated changes in m6A modifications may be a potential mechanism for the pathogenesis of depression and the efficacy of antidepressants, and that the neurotrophin signaling pathway plays a key role in this process.
Keywords: N6-methyladenosine modification; antidepressant; hypericin; neurotrophin signaling pathway.