Heat-treated Pediococcus acidilactici LM1013-mediated inhibition of biofilm formation by Cutibacterium acnes and its application in acne vulgaris: A single-arm clinical trial

J Cosmet Dermatol. 2023 Nov;22(11):3125-3134. doi: 10.1111/jocd.15809. Epub 2023 May 12.

Abstract

Purpose: Acne vulgaris is a common skin disease accompanied by chronic inflammation in the pilosebaceous follicles, resulting from excessive Cutibacterium acnes. This study aimed to investigate the inhibition of biofilm formation by C. acnes ATCC 6919 using heat-treated Pediococcus acidilactici LM1013 (HT-LM1013), previously isolated from the Korean traditional fermented alcoholic beverage-makgeolli, and its application as a leave-on-type product for patients with acne vulgaris.

Methods: HT-LM1013 was prepared by Lactomason and homogenized using a high-pressure homogenizer. The minimum inhibitory concentration (MIC), tricarboxylic acid (TCA) cycle, and lipase activity were evaluated for C. acnes inhibition. Inhibition of biofilm formation was demonstrated using a crystal violet solution. Damaged C. acnes was observed using field-emission scanning electron microscopy (FE-SEM). Clinical trials were performed using a leave-on-type product containing HT-LM1013.

Results: HT-LM1013 inhibited the TCA cycle (36.80%) and lipase activity using palmitate (31.89%), stearate (36.91%), and oleate (30.86%) as substrates at 1 × MIC (p < 0.01). After treatment with HT-LM1013, concave and elongated shapes of C. acnes were observed by FE-SEM. In addition, HT-LM1013 inhibited biofilm formation by 71.75% at 1 × MIC (p < 0.001) and removed 73.35% of mature biofilms (p < 0.01). In the clinical trial, the leave-on-type product decreased the number of closed comedones from 14.04 to 10.22, open comedones from 7.22 to 4.39%, and sebum content to 76.23% at week 4 (p < 0.01). The satisfaction score of the participants was recorded 3.83 on a five-point scale.

Conclusion: HT-LM1013 is potent for the treatment of acne vulgaris.

Keywords: Cutibacterium acnes; Pediococcus acidilactici; acne vulgaris; biofilms; postbiotics.