Cryopreservation allows strains to be stored, eliminating genetic drift and maintenance costs. Existing cryopreservation methods for the economically-important entomopathogenic nematode Steinernema carpocapsae involve multiple incubation and filtration steps to precondition the animals. The standard protocol for freezing the model organism Caenorhabditis elegans in buffer is simpler, and a recent C. elegans dry-freezing protocol allows stocks to survive multiple freeze-thaws, a possibility during a power failure. Here we report the efficacy of C. elegans cryopreservation protocols adapted for S. carpocapsae . We show that dry freezing with disaccharides, but not glycerol-based or trehalose-DMSO-based freezing buffer, allows reliable recovery of infective juveniles.
Copyright: © 2023 by the authors.