Although neonates and children with congenital heart disease are primarily hospitalized for cardiac and pulmonary diseases, they are also at an increased risk for neurologic injury due to both empiric differences that can exist in their nervous systems and acquired injury from cardiopulmonary pathology and interventions. Although early efforts in care focused on survival after reparative cardiac surgery, as surgical and anesthetic techniques have evolved and survival rates accordingly improved, the focus has now shifted to maximizing outcomes among survivors. Children and neonates with congenital heart disease experience seizures and poor neurodevelopmental outcomes at a higher rate than age-matched counterparts. The aim of neuromonitoring is to help clinicians identify patients at highest risk for these outcomes to implement strategies to mitigate these risks and to also help with neuroprognostication after an injury has occurred. The mainstays of neuromonitoring are (1) electroencephalographic monitoring to evaluate brain activity for abnormal patterns or changes and to identify seizures, (2) neuroimaging to reveal structural changes and evidence of physical injury in and around the brain, and (3) near-infrared spectroscopy to monitor brain tissue oxygenation and detect changes in perfusion. This review will detail the aforementioned techniques and their use in the care of pediatric patients with congenital heart disease.
Keywords: Congenital heart disease; Electroencephalography; Near-infrared spectroscopy; Neuroimaging; Neuromonitoring.
© 2023. Springer Science+Business Media, LLC, part of Springer Nature and Neurocritical Care Society.