Craniovertebral Junction Instability after Oncological Resection: A Narrative Review

Diagnostics (Basel). 2023 Apr 21;13(8):1502. doi: 10.3390/diagnostics13081502.

Abstract

The craniovertebral junction (CVJ) is a complex transition area between the skull and cervical spine. Pathologies such as chordoma, chondrosarcoma and aneurysmal bone cysts may be encountered in this anatomical area and may predispose individuals to joint instability. An adequate clinical and radiological assessment is mandatory to predict any postoperative instability and the need for fixation. There is no common consensus on the need for, timing and setting of craniovertebral fixation techniques after a craniovertebral oncological surgery. The aim of the present review is to summarize the anatomy, biomechanics and pathology of the craniovertebral junction and to describe the available surgical approaches to and considerations of joint instability after craniovertebral tumor resections. Although a one-size-fits-all approach cannot encompass the extremely challenging pathologies encountered in the CVJ area, including the possible mechanical instability that is a consequence of oncological resections, the optimal surgical strategy (anterior vs posterior vs posterolateral) tailored to the patient's needs can be assessed preoperatively in many instances. Preserving the intrinsic and extrinsic ligaments, principally the transverse ligament, and the bony structures, namely the C1 anterior arch and occipital condyle, ensures spinal stability in most of the cases. Conversely, in situations that require the removal of those structures, or in cases where they are disrupted by the tumor, a thorough clinical and radiological assessment is needed to timely detect any instability and to plan a surgical stabilization procedure. We hope that this review will help shed light on the current evidence and pave the way for future studies on this topic.

Keywords: atlanto-occipital joint; atlantoaxial fusion; chordoma; endoscopic surgical procedure; joint instability; skull base; spinal fusion.

Publication types

  • Review

Grants and funding

This research received no external funding.