Osimertinib is a third-generation epidermal growth factor receptor and tyrosine kinase inhibitor (EGFR-TKI) approved for the treatment of lung adenocarcinoma patients harboring EGFR mutations. However, acquired resistance to this targeted therapy is inevitable, leading to disease relapse within a few years. Therefore, understanding the molecular mechanisms of osimertinib resistance and identifying novel targets to overcome such resistance are unmet needs of cancer patients. Here, we investigated the efficacy of two novel CDK12/13 inhibitors, AU-15506 and AU-16770, in osimertinib-resistant EGFR mutant lung adenocarcinoma cells in culture and xenograft models in vivo. We demonstrate that these drugs, either alone or in combination with osimertinib, are potent inhibitors of osimertinib-resistant as well as -sensitive lung adenocarcinoma cells in culture. Interestingly, only the CDK12/13 inhibitor in combination with osimertinib, although not as monotherapy, suppresses the growth of resistant tumors in xenograft models in vivo. Taken together, the results of this study suggest that inhibition of CDK12/13 in combination with osimertinib has the potential to overcome osimertinib resistance in EGFR mutant lung adenocarcinoma patients.
Keywords: AU15506; AU16770; CDK12; CDK13; EGFR; inhibitor; lung cancer; osimertinib; resistance.