The early Paleozoic emergence of bioturbating (sediment-dwelling and -mixing) animals has long been assumed to have led to substantial changes in marine biogeochemistry, seafloor ecology, and the preservation potential of both sedimentary and fossil archives. However, the timing of the rise of bioturbation and environmental patterns in its expansion have long been subjects of debate-resolution of which has been hampered, in part, by a paucity of high-resolution bioturbation data or of systematic investigations of facies trends in lower Paleozoic bioturbation. To address these issues, we conducted an integrated sedimentological and ichnological characterization of the Cambrian-Ordovician Port au Port succession and Cow Head Group of western Newfoundland, encompassing over 350 meters of stratigraphy logged at the centimeter to decimeter scale. We find that, across a wide range of marine facies, bioturbation does not on average exceed moderate intensities-corroborating observations from other lower Paleozoic successions indicating that the early Paleozoic development of bioturbation was a protracted process. Moreover, bioturbation intensities in the Port au Port succession and Cow Head Group are commonly characterized by considerable variability at even fine scales of stratigraphic resolution and changes in bioturbation intensity correlate strongly with variability in sedimentary facies. We observe that facies recording nearshore depositional environments and carbonate-rich lithologies are each characterized by the highest intensities of both burrowing and sediment mixing. These data highlight the need for a high-resolution and facies-specific approach to reconstructing the evolutionary history of bioturbation and suggest that average levels of bioturbation, although relatively low throughout this interval, increased notably earlier in nearshore marine settings.
Keywords: Cambrian; Newfoundland; Ordovician; bioturbation; paleoenvironment; sediment mixing.
© 2023 John Wiley & Sons Ltd.