Deep learning has been recognized as a paradigm-shifting tool in radiology. Deep learning reconstruction (DLR) has recently emerged as a technology used in the image reconstruction process of MRI, which is an essential procedure in generating MR images. Denoising, which is the first DLR application to be realized in commercial MRI scanners, improves signal-to-noise ratio. When applied to lower magnetic field-strength scanners, the signal-to-noise ratio can be increased without extending the imaging time, and image quality is comparable to that of higher-field-strength scanners. Shorter imaging times decrease patient discomfort and reduce MRI scanner running costs. The incorporation of DLR into accelerated acquisition imaging techniques, such as parallel imaging or compressed sensing, shortens the reconstruction time. DLR is based on supervised learning using convolutional layers and is divided into the following three categories: image domain, k-space learning, and direct mapping types. Various studies have reported other derivatives of DLR, and several have shown the feasibility of DLR in clinical practice. Although DLR efficiently reduces Gaussian noise from MR images, denoising makes image artifacts more prominent, and a solution to this problem is desired. Depending on the training of the convolutional neural network, DLR may change the imaging features of lesions and obscure small lesions. Therefore, radiologists may need to adopt the habit of questioning whether any information has been lost on images that appear clean. ©RSNA, 2023 Quiz questions for this article are available in the supplemental material.