Genomic characterisation of de novo EGFR copy number gain and its impact on the efficacy of first-line EGFR-tyrosine kinase inhibitors for EGFR mutated non-small cell lung cancer

Eur J Cancer. 2023 Jul:188:81-89. doi: 10.1016/j.ejca.2023.04.009. Epub 2023 Apr 20.

Abstract

Background: Non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutation generally respond well to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs). However, genomic characterisation of de novo EGFR copy number gain (CNG) and its impact on the efficacy of first-line EGFR-TKIs remains unclear.

Methods: This multicenter, retrospective and real-world study included two cohorts that enroled EGFR mutant NSCLC patients. EGFR CNG was tested by next-generation sequencing of untreated tissue specimens. Cohort 1 detected the impact of EGFR CNG on first-line EGFR-TKIs treatment, and cohort 2 explored the genomic characterisation.

Results: Cohort 1 enroled 355 patients from four cancer centres between January 2013 and March 2022. The patients were divided into three groups, included the EGFR non-CNG, EGFR CNG, and EGFR uncertain-CNG. No significant difference in progression-free survival (PFS) was found between the three groups (10.0 months vs. 10.8 months vs. 9.9 months, respectively, p = 0.384). Furthermore, the overall response rate was not statistically significant in the EGFR CNG group compared to the EGFR non-CNG or uncertain arm (70.3% vs. 63.2% vs. 54.5%, respectively, p = 0.154). Cohort 2 included 7876 NSCLC patients with 16.4% showing EGFR CNG. Gene mutations such as TP53, IKZF1, RAC1, MYC, MET, CDKN2A/B and alterations of the metabolic-related and ERK signalling pathway were significantly associated with patients with EGFR CNG compared to those without.

Conclusions: De novo EGFR CNG had no effect on the efficacy of first-line EGFR-TKI treatment in EGFR mutant NSCLC patients, and tumours with EGFR CNG had more complex genomic profiles than those without.

Keywords: Efficacy; Epidermal growth factor receptor; Gene copy number gain; Mutation; Non-small cell lung cancer.

Publication types

  • Multicenter Study

MeSH terms

  • Antineoplastic Agents* / therapeutic use
  • Carcinoma, Non-Small-Cell Lung* / drug therapy
  • Carcinoma, Non-Small-Cell Lung* / genetics
  • Carcinoma, Non-Small-Cell Lung* / pathology
  • DNA Copy Number Variations
  • ErbB Receptors / genetics
  • Genomics
  • Humans
  • Lung Neoplasms* / drug therapy
  • Lung Neoplasms* / genetics
  • Lung Neoplasms* / pathology
  • Mutation
  • Protein Kinase Inhibitors / therapeutic use
  • Retrospective Studies
  • Tyrosine Kinase Inhibitors

Substances

  • Tyrosine Kinase Inhibitors
  • Antineoplastic Agents
  • Protein Kinase Inhibitors
  • ErbB Receptors
  • EGFR protein, human