Effects of climate change on vegetation dynamics of the Qinghai-Tibet Plateau, a causality analysis using empirical dynamic modeling

Heliyon. 2023 May 1;9(5):e16001. doi: 10.1016/j.heliyon.2023.e16001. eCollection 2023 May.

Abstract

Given the vital role of the Qinghai-Tibet Plateau (QTP) as water tower in Asia and regulator for regional and even global climate, the relationship between climate change and vegetation dynamics on it has received considerable focused attention. Climate change may influence the vegetation growth on the plateau, but clear empirical evidence of such causal linkages is sparse. Herein, using datasets CRU-TS v4.04 and AVHHR NDVI from 1981 to 2019, we quantify causal effects of climate factors on vegetation dynamics with an empirical dynamical model (EDM) -- a nonlinear dynamical systems analysis approach based on state-space reconstruction rather than correlation. Results showed the following: (1) climate change promotes the growth of vegetation on the QTP, and specifically, this favorable influence of temperature is stronger than precipitation's; (2) the direction and strength of climate effects on vegetation varied over time, and the effects are seasonally different; (3) a significant increase in temperature and a slight increase in precipitation are beneficial to vegetation growth, specifically, NDVI will increase within 2% in the next 40 years with the climate trend of warming and humidity. Besides the above results, another interesting finding is that the two seasons in which precipitation strongly influence vegetation in the Three-River Source region (part of the QTP) are spring and winter. This study provides insights into the mechanisms by which climate change affects vegetation growth on the QTP, aiding in the modeling of vegetation dynamics in future scenarios.

Keywords: Causal effects; Climate change; EDM; NDVI.