Biosynthesis of nanoparticles is increasingly becoming popular due to the demand for sustainable technologies worldwide. In the present investigation, Acmella oleracea plant extract fuelled combustion technique followed by calcination at 600 °C was adopted to prepare nanocrystalline Ca2Fe2O5. The prepared nano compound was characterised using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Ultra Violet (UV) spectroscopy, Infrared (IR) spectroscopy and its role was assessed for photocatalytic pollutant degradation along with bactericidal action in the concentration range of 1 μg/mL to 320 μg/mL. The photocatalytic degradation efficiency of pollutant drugs Clopidogrel Bisulphate and Asprin used for cardiovascular disorders is around 80% with 10 mg/L photocatalyst. The results showed that the photocatalytic activity increased with rising pH from 4, to 10, along with a significant antibacterial action against Enterococcus faecalis bacteria and a slight cytotoxic effect at high concentrations. The antibacterial property was reinforced by Minimum inhibitory concentrations (MIC) and Minimum bactericidal concentrations (MBC) studies with an average value of 0.103 at 600 nm which was further proved by significant anti-biofilm activeness. Adhesion tests in conjunction with cryogenic-scanning electron microscopy displayed a morphological change through agglomeration that caused an expansion in nano particles from 181 nm to 223.6 nm due to internalization followed by inactivation of bacteria. In addition, the non-toxicity of nano Ca2Fe2O5 was confirmed by subtle cytological changes in microscopic images of Allium Cepa root cells in the concentration range 0.01-100 μg/mL and a slight inhibition in HeLa cell proliferation indicated by IC50 value of 170.94 μg/mL. In total, the current investigation for the first time reveals the application of bio based synthesis of Nano Ca2Fe2O5 to new possibilities in bioremediation namely degrading cardiovascular pharmaceutical pollutants, endodontic antibacterial action and cytological activity.
Keywords: Antibiofilm; Calcium ferrate; Cardiovascular drugs; Cytotoxicity; Endodontics; Photocatalytic.
© 2023 The Author(s).