Service life assessment of yttria stabilized zirconia (YSZ) based thermal barrier coating through wear behaviour

Heliyon. 2023 May 6;9(5):e16107. doi: 10.1016/j.heliyon.2023.e16107. eCollection 2023 May.

Abstract

Countless research has suggested Yttria-stabilized Zirconia (YSZ) to be a top candidate for being implemented as thermal barrier coatings (TBC). However, when exposed to prolonged service, temperature and stress variations succeed in initiating a catastrophic phase transformation from tetragonal to monoclinic structure in Zirconia. Hence, the estimation of endurance for YSZ-based TBC is necessary to minimize failure in such situations. The main purpose of this research was to determine the relationship between tribological investigations and the estimated lifespan of YSZ coatings accurately. The study used various methods such as wear resistance testing, optical profilometry, specific wear rate, and coefficient of friction to estimate the maximum durability of TBCs. The research also provided insights into the composition and microstructure of the TBC system and found the optimized concentration of Yttrium doping to be 3.5 wt %. The study discovered that erosion was the main cause of roughness depreciation from SN to S1000. The estimation of the service life was primarily made based on optical profilometry, specific wear rate (SWR), coefficient of friction (COF) and wear resistance values which were further supported by the results of chemical characterization of the samples through electron dispersive spectroscopy (EDS), wavelength dispersive spectroscopy (WDS) and X-Ray Diffraction (XRD) analysis. The results were reliable and accurate and suggested future areas of investigation, such as 3D profilometry for surface roughness and thermal conductivity evaluation using laser-assisted infrared thermometers.

Keywords: Coating durability; Microstructure; Thermal barrier coatings; Wear; Yttria-stabilized zirconia.