Protective role of cGAS in NASH is related to the maintenance of intestinal homeostasis

Liver Int. 2023 Sep;43(9):1937-1949. doi: 10.1111/liv.15610. Epub 2023 May 24.

Abstract

Background & aims: Various intracellular pathways regulate inflammation in NASH. Cyclic GMP-AMP synthase (cGAS) is a DNA sensor that activates STING and plays a role in inflammatory diseases. Here, we explored the role of cGAS in hepatic damage, steatosis, inflammation, and liver fibrosis in mouse models of NASH.

Methods: cGAS deficient (cGAS-KO) and STING deficient (STING-KO) mice received high fat-high cholesterol-high sugar diet (HF-HC-HSD) or relevant control diets. Livers were evaluated after 16 or 30 weeks.

Results: HF-HC-HSD diet, both at 16 and 30 weeks, resulted in increased cGAS protein expression as well as in increased ALT, IL-1β, TNF-α and MCP-1 in wild-type (WT) mice compared to controls. Surprisingly, liver injury, triglyceride accumulation, and inflammasome activation were greater in HF-HC-HSD cGAS-KO compared to WT mice at 16 and to a lesser extent at 30 weeks. STING, a downstream target of cGAS was significantly increased in WT mice after HF-HC-HSD. In STING-KO mice after HF-HC-HSD feeding, we found increased ALT and attenuated MCP1 and IL-1β expression compared to WT mice. Markers of liver fibrosis were increased in cGAS- and STING-KO mice compared to WT on HF-HC-HSD. We discovered that cGAS-KO mice had a significant increase in circulating endotoxin levels on HF-HC-HSD that correlated with changes in intestinal morphology which was exacerbated by HF-HC-HSD compared to WT mice.

Conclusion: Our findings indicate that cGAS or STING deficiency exacerbate liver damage, steatosis, and inflammation in HF-HC-HSD diet-induced NASH, which might be linked to the disruption of the gut barrier.

Keywords: cGAMP; cGAS; intestine; liver damage; non-alcoholic steatohepatitis.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Homeostasis
  • Inflammation / pathology
  • Liver / pathology
  • Liver Cirrhosis / pathology
  • Mice
  • Mice, Inbred C57BL
  • Non-alcoholic Fatty Liver Disease* / pathology
  • Nucleotidyltransferases* / metabolism

Substances

  • Nucleotidyltransferases
  • cGAS protein, mouse