It is generally assumed that frequency selectivity varies along the cochlea. For example, at the base of the cochlea, which is a region sensitive to high-frequency sounds, the best frequency of a cochlear location increases toward the most basal end, that is, near the stapes. Response phases also vary along cochlear locations. At any given frequency, there is a decrease in phase lag toward the stapes. This tonotopic arrangement in the cochlea was originally described by Georg von Békésy in a seminal series of experiments on human cadavers and has been confirmed in more recent works on live laboratory animals. Nonetheless, our knowledge of tonotopy at the apex of the cochlea remains incomplete in animals with low-frequency hearing, which is relevant to human speech. The results of our experiments on guinea pig, gerbil, and chinchilla cochleas, regardless of the sex of the animal, show that responses to sound differ at locations across the apex in a pattern consistent with previous studies of the base of the cochlea.SIGNIFICANCE STATEMENT Tonotopy is an important property of the auditory system that has been shown to exist in many auditory centers. In fact, most auditory implants work on the assumption of its existence by assigning different frequencies to different stimulating electrodes based on their location. At the level of the basilar membrane in the cochlea, a tonotopic arrangement implies that high-frequency stimuli evoke largest displacements at the base, near the ossicles, and low-frequency sounds have their greatest effects at the apex. Although tonotopy has been confirmed at the base of the cochlea on live animals at the apex of the cochlea, however, it has been less studied. Here, we show that a tonotopic arrangement does exist at the apex of the cochlea.
Keywords: cochlea; hearing; optical coherence tomography; organ of Corti; tonotopy.
Copyright © 2023 the authors.