The wings of the purple spotted swallowtail Graphium weiskei are marked by an unusual bright colour pattern. Spectrophotometry on G. weiskei wings demonstrated the presence of a pigment with an absorption spectrum (peak wavelength λmax=676 nm) similar to that of the bile pigment sarpedobilin in the wings of the congeneric Graphium sarpedon (λmax=672 nm). Sarpedobilin alone causes cyan-blue wing areas, but the green-coloured areas of G. sarpedon wings result from subtractive colour mixing with the carotenoid lutein. Reflectance spectra of the blue-coloured areas of G. weiskei wings indicate that sarpedobilin is mixed with the short-wavelength-absorbing papiliochrome II. An enigmatic pigment, tentatively called weiskeipigment (λmax=580 nm), enhances the saturation of the blue colour. Weiskeipigment causes a purple colour in areas where the sarpedobilin concentration is low. The wings of the related papilionid Papilio phorcas contain the bile pigment pharcobilin (λmax=604 nm), as well as another sarpedobilin (λmax=663 nm). The cyan to greenish wings of P. phorcas are due to phorcabilin and sarpedobilin mixed with papiliochrome II. A survey of known subspecies of G. weiskei as well as of congeneric Graphium species of the 'weiskei' group shows various degrees of subtractive colour mixing of bilins and short-wavelength absorbers (carotenoids and/or papiliochromes) in their wings. This study illuminates the underestimated role of bile pigments in butterfly wing colouration.
Keywords: Bilins; Pigmentary colouration; Reflectance spectrum; Sexual dichromatism.
© 2023. Published by The Company of Biologists Ltd.