Wood decay fungi (WDF) are a well-known source of enzymes and metabolites which have applications in numerous fields, including myco-remediation. Pharmaceuticals are becoming more problematic as environmental water pollutants due to their widespread use. In this study, Bjerkandera adusta, Ganoderma resinaceum, Perenniporia fraxinea, Perenniporia meridionalis and Trametes gibbosa were chosen from WDF strains maintained in MicUNIPV (the fungal research collection of the University of Pavia) to test their potential to degrade pharmaceuticals. The degradation potential was tested in spiked culture medium on diclofenac, paracetamol and ketoprofen, three of the most common pharmaceuticals, and irbesartan, a particularly difficult molecule to degrade. G. resinaceum and P. fraxinea were found to be the most effective at degradation, achieving 38% and 52% (24 h) and 72% and 49% (7 d) degradations of diclofenac, 25% and 73% (24 h) and 100% (7 d) degradations of paracetamol and 19% and 31% (24 h) and 64% and 67% (7 d) degradations of ketoprofen, respectively. Irbesartan was not affected by fungal activity. The two most active fungi, G. resinaceum and P. fraxinea, were tested in a second experiment in discharge wastewater collected from two different wastewater treatment plants in northern Italy. A high degradation was found in azithromycin, clarithromycin and sulfametoxazole (from 70% up to 100% in 7 days).
Keywords: diclofenac; ketoprofen; myco-remediation; paracetamol; pharmaceuticals; wastewater.