Aerosolized Antibiotics to Manage Ventilator-Associated Infections: A Comprehensive Review

Antibiotics (Basel). 2023 Apr 23;12(5):801. doi: 10.3390/antibiotics12050801.

Abstract

Background: Ventilator-associated lower respiratory tract infectious complications in critically ill patients cover a wide spectrum of one disease process (respiratory infection), initiating from tracheal tube and/or tracheobronchial colonization, to ventilator associated tracheobronchitis (VAT) and ventilator-associated pneumonia (VAP). VAP occurence has been associated with increased intensive care unit (ICU) morbidity (ventilator days, as well as length of ICU and hospital stay) and ICU mortality. Therefore, treatments that aim at VAP/VAT incidence reduction are a high priority.

Aim: The aim of the present review is to discuss the current literature concerning two major aspects: (a) can aerosolized antibiotics (AA) administered in a pre-emptive way prevent the occurrence of ventilator-associated infections? and (b) can VAT treatment with aerosolized avert the potential evolution to VAP?

Results: There were identified eight studies that provided data on the use of aerosolized antibiotics for the prevention of VAT/VAP. Most of them report favorable data on reducing the colonisation rate and the progression to VAP/VAT. Another four studies dealt with the treatment of VAT/VAP. The results support the decrease in the incidence to VAP transition and/or the improvement in signs and symptoms of VAP. Moreover, there are concise reports on higher cure rates and microbiological eradication in patients treated with aerosolized antibiotics. Yet, differences in the delivery modality adopted and resistance emergence issues preclude the generalisability of the results.

Conclusion: Aerosolized antibiotic therapy can be used to manage ventilator-associated infections, especially those with difficult to treat resistance. The limited clinical data raise the need for large randomized controlled trials to confirm the benefits of AA and to evaluate the impact on antibiotic selection pressure.

Keywords: aerosolized antibiotics; intensive care unit; lower respiratory tract infections; nebulized antibiotics; tracheal tube colonization; treatment; ventilator-associated pneumonia; ventilator-associated tracheobronchitis.

Publication types

  • Review

Grants and funding

This research received no external funding.