Odd-parity superconductor UTe_{2} shows spontaneous time-reversal symmetry breaking and multiple superconducting phases, which imply chiral superconductivity, but only in a subset of samples. Here we microscopically observe a homogeneous superfluid density n_{s} on the surface of UTe_{2} and an enhanced superconducting transition temperature near the edges. We also detect vortex-antivortex pairs even at zero magnetic field, indicating the existence of a hidden internal field. The temperature dependence of n_{s}, determined independent of sample geometry, does not support point nodes along the b axis for a quasi-2D Fermi surface and provides no evidence for multiple phase transitions in UTe_{2}.