Background: Excessive and unresolved neuroinflammation plays an important role in the pathophysiology of many neurological disorders, such as ischemic stroke, yet there are no effective treatments. Tripartite motif-containing 67 (TRIM67) plays a crucial role in the control of inflammatory disease and pathogen infection-induced inflammation; however, the role of TRIM67 in cerebral ischemia‒reperfusion injury remains poorly understood.
Results: In the present study, we demonstrated that the expression level of TRIM67 was significantly reduced in middle cerebral artery occlusion and reperfusion (MCAO/R) mice and primary cultured microglia subjected to oxygen-glucose deprivation and reperfusion. Furthermore, a significant reduction in infarct size and neurological deficits was observed in mice after TRIM67 upregulation. Interestingly, TRIM67 upregulation alleviated neuroinflammation and cell death after cerebral ischemia‒reperfusion injury in MCAO/R mice. A mechanistic study showed that TRIM67 bound to IκBα, reduced K48-linked ubiquitination and increased K63-linked ubiquitination, thereby inhibiting its degradation and promoting the stability of IκBα, ultimately inhibiting NF-κB activity after cerebral ischemia.
Conclusion: Taken together, this study demonstrated a previously unidentified mechanism whereby TRIM67 regulates neuroinflammation and neuronal apoptosis and strongly indicates that upregulation of TRIM67 may provide therapeutic benefits for ischemic stroke.
Keywords: Cerebral ischemia‒reperfusion injury; IκBα; Neuroinflammation; Neuronal apoptosis; TRIM67; Ubiquitination.
© 2023. The Author(s).