The Caatinga biome is the largest dry tropical forest region in South America as well as one of the most vulnerable regions in the world to the climate changes forecast for this century. Climate forecasts for the biome include increased air temperature, reduced rainfall and aridization. This biome does not have a homogeneous landscape; instead it has several rainforest enclaves. This article describes a study to model the potential distribution of four epiphytic cactus species (Epiphyllum phyllanthus (L.) Haw., Rhipsalis floccosa Salm-Dyck ex Pfeiff., Rhipsalis lindbergiana K. Schum and Rhipsalis russellii Britton & Rose.) in the biome under future climate scenarios and traces out a prognosis for the enclaves and the biome. For that purpose, we used the MaxEnt modeling method, considering two future time intervals (2041-2060 and 2061-2080) and the interval 1961-1990 for the current situation, with the RCP4.5 and 8.5 scenarios. The projections for future potential distribution showed a spatial contractions greater than 88% found in the areas of high potential presence for the target species throughout the biome and in all the scenarios. The results strengthen the expectation of aridization in the Caatinga biome, with the loss or shrinkage of rainforest enclaves as time progresses.