Immature human engineered heart tissues engraft in a guinea pig chronic injury model

Dis Model Mech. 2023 May 1;16(5):dmm049834. doi: 10.1242/dmm.049834. Epub 2023 Jun 5.

Abstract

Engineered heart tissue (EHT) transplantation represents an innovative, regenerative approach for heart failure patients. Late preclinical trials are underway, and a first clinical trial started recently. Preceding studies revealed functional recovery after implantation of in vitro-matured EHT in the subacute stage, whereas transplantation in a chronic injury setting was less efficient. When transplanting matured EHTs, we noticed that cardiomyocytes undergo a dedifferentiation step before eventually forming structured grafts. Therefore, we wanted to evaluate whether immature EHT (EHTIm) patches can be used for transplantation. Chronic myocardial injury was induced in a guinea pig model. EHTIm (15×106 cells) were transplanted within hours after casting. Cryo-injury led to large transmural scars amounting to 26% of the left ventricle. Grafts remuscularized 9% of the scar area on average. Echocardiographic analysis showed some evidence of improvement of left-ventricular function after EHTIm transplantation. In a small translational proof-of-concept study, human scale EHTIm patches (4.5×108 cells) were epicardially implanted on healthy pig hearts (n=2). In summary, we provide evidence that transplantation of EHTIm patches, i.e. without precultivation, is feasible, with similar engraftment results to those obtained using matured EHT.

Keywords: Cardiac repair; Cell transplantation; Chronic injury model; Engineered heart tissue; Heart failure; Tissue engineering.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Differentiation
  • Echocardiography
  • Guinea Pigs
  • Heart Ventricles
  • Heart*
  • Humans
  • Myocardium
  • Myocytes, Cardiac*
  • Tissue Engineering / methods