Objectives: Biological composite valve grafts (CVGs) are being performed more frequently, which increases the need for interventions treating bioprosthetic valve failure. The feasibility of valve-in-valve procedures in this population is uncertain. This study aimed to assess changes in aortic root geometry and coronary height following CVG implantation to better understand future interventions.
Methods: We retrospectively identified 64 patients following bioprosthetic CVG replacement with pre- and postoperative computed tomography angiography. Root assessment was conducted as in preprocedural transcatheter aortic valve evaluation using a virtual valve simulation.
Results: In 64 patients (age, 67.6 ± 9.3 years; 76.6% men) the preoperative coronary height was 14.3 ± 6.8 mm for the left coronary artery (LCA) and 17.9 ± 5.9 mm for the right coronary artery (RCA), which significantly decreased after CVG implantation, with 8.7 ± 4.4 mm for the LCA and 11.3 ± 4.4 mm for the RCA (P < .001). The virtual valve-to-coronary distances measured 4.0 ± 1.3 mm (LCA) and 4.6 ± 1.4 mm (RCA). Overall, 59.4% (n = 38) of patients with bio-CVGs would have been at risk for coronary obstruction, 29.7% (n = 19) for LCA, 10.9% (n = 7) for RCA, and 18.8% (n = 12) for combined LCA and RCA.
Conclusions: Coronary height significantly decreased following CVG implantation. The majority of patients after bio-CVG were at a potential risk for coronary obstruction in future valve-in-valve procedures. Further studies are needed to identify the best possible technique for coronary reimplantation and other measures to diminish the risk for future coronary obstruction in this population.
Keywords: aortic root geometry; composite valve graft implantation; coronary height; valve-in-valve.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.