Introduction: Cross-sectional imaging plays an integral role in the management of upper gastrointestinal (UGI) cancer, from initial diagnosis and staging to determining appropriate treatment strategies. Subjective imaging interpretation has known limitations. The field of radiomics has evolved to extract quantitative data from medical imaging and relate these to biological processes. The key concept behind radiomics is that the high-throughput analysis of quantitative imaging features can provide predictive or prognostic information, with the goal of providing individualised care.
Objective: Radiomic studies have shown promising utility in upper gastrointestinal oncology, highlighting a potential role in determining stage of disease and degree of tumour differentiation and predicting recurrence-free survival. This narrative review aims to provide an insight into the concepts underpinning radiomics, as well as its potential applications for guiding treatment and surgical decision-making in upper gastrointestinal malignancy.
Conclusion: Outcomes from studies to date have been promising; however, further standardisation and collaboration are required. Large prospective studies with external validation and evaluation of radiomic integration into clinical pathways are needed. Future research should now focus on translating the promising utility of radiomics into meaningful patient outcomes.
Keywords: Artificial intelligence; Image processing; Radiomics; Surgery; Upper gastrointestinal cancer.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.