De novo pyrimidine biosynthetic complexes support cancer cell proliferation and ferroptosis defence

Nat Cell Biol. 2023 Jun;25(6):836-847. doi: 10.1038/s41556-023-01146-4. Epub 2023 Jun 8.

Abstract

De novo pyrimidine biosynthesis is achieved by cytosolic carbamoyl-phosphate synthetase II, aspartate transcarbamylase and dihydroorotase (CAD) and uridine 5'-monophosphate synthase (UMPS), and mitochondrial dihydroorotate dehydrogenase (DHODH). However, how these enzymes are orchestrated remains enigmatical. Here we show that cytosolic glutamate oxaloacetate transaminase 1 clusters with CAD and UMPS, and this complex then connects with DHODH, which is mediated by the mitochondrial outer membrane protein voltage-dependent anion-selective channel protein 3. Therefore, these proteins form a multi-enzyme complex, named 'pyrimidinosome', involving AMP-activated protein kinase (AMPK) as a regulator. Activated AMPK dissociates from the complex to enhance pyrimidinosome assembly but inactivated UMPS, which promotes DHODH-mediated ferroptosis defence. Meanwhile, cancer cells with lower expression of AMPK are more reliant on pyrimidinosome-mediated UMP biosynthesis and more vulnerable to its inhibition. Our findings reveal the role of pyrimidinosome in regulating pyrimidine flux and ferroptosis, and suggest a pharmaceutical strategy of targeting pyrimidinosome in cancer treatment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • AMP-Activated Protein Kinases
  • Cell Proliferation
  • Dihydroorotate Dehydrogenase
  • Ferroptosis*
  • Neoplasms*
  • Pyrimidines / pharmacology

Substances

  • Dihydroorotate Dehydrogenase
  • AMP-Activated Protein Kinases
  • Pyrimidines