First Report of Cladosporium cladosporioides Causing Leaf Spot of Aralia cordata var. continentalis in Korea

Plant Dis. 2023 Jun 9. doi: 10.1094/PDIS-02-23-0251-PDN. Online ahead of print.

Abstract

Aralia cordata var. continentalis (Kitag), commonly known as Japanese spikenard, is an upright herbaceous perennial medicinal plant effective in relieving pain. It is also consumed as a leafy vegetable. Leaf spots and blight symptoms on A. cordata resulting in defoliation were observed in July 2021 from a research field with a disease incidence of nearly 40-50% from 80 plants in Yeongju, Korea. Brown spots with chlorotic halos first appear on the upper leaf surface (Fig. 1A). In the later stage, spots enlarge and coalesce; resulting in the leaves to dry-off (Fig. 1B). To isolate the causal agent, small pieces of diseased leaves displaying the lesion were surface-sterilized by 70% ethanol for 30 s and rinsed twice with sterile distilled water (SDW). Later, the tissues were crushed in a sterile 2.0-ml Eppendorf tube with a rubber pestle in SDW. The suspension was serially diluted and spread on potato dextrose agar (PDA) medium, incubated at 25°C for 3 days. A total of 3 isolates were obtained from the infected leaves. Pure cultures were obtained by the monosporic culture technique (Choi et al. 1999). After 2 to 3 days of incubation with a 12-h photoperiod, the fungus initially produced gray mold colonies in olive color, and the edges of the mold appeared white with a velvety texture after 20 days (Fig. 1C). Microscopic observations revealed small, single-celled, rounded, and pointed conidia that measured 6.67 ± 0.23 µm × 4.18 ± 0.12 µm (length × width) (n=40 spores) (Fig. 1D). On the basis of its morphology, the causal organism was identified as Cladosporium cladosporioides (Torres et al. 2017). For molecular identification, pure colonies of three single-spore isolates were used for DNA extraction. A fragment of the ITS, ACT, and TEF1-α were amplified using the primers ITS1/ITS4 (Zarrin et al. 2016), ACT-512F/ACT-783R, and EF1-728F/EF1-986R, respectively, by PCR (Carbone et al. 1999). The DNA sequences from all three isolates (GYUN-10727, GYUN-10776, and GYUN-10777) were identical. The resulting ITS (ON005144), ACT (ON014518), and TEF1-α (OQ286396) sequences from the representative isolate GYUN-10727 were 99 to 100% identical to the C. cladosporioides (ITS: KX664404, MF077224; ACT: HM148509; TEF1-α: HM148268, HM148266). The phylogenetic dendrogram was constructed from the comparative analysis of ITS, ACT, and TEF1-α gene sequences, showing the relationship between Cladosporium cladosporioides and related Cladosporium species (Fig. 2). The isolate GYUN-10727 has been deposited in Korean Agricultural Culture Collection (KACC 410009), and used as a representative strain in this study. For the pathogenicity test, healthy fresh leaves (3 leaves per plant) of 3-months-old A. cordata plants in pots were spray inoculated with conidial suspensions (1 × 10⁴ conidia/mL) of GYUN-10727, which was obtained from a 7-day-old PDA culture. Leaves sprayed with SDW were considered as control. After 15 days of incubation at 25°C ± 5°C under greenhouse conditions, necrotic lesions were observed on the inoculated A. cordata leaves, while control leaves did not develop any disease symptoms. The experiment was performed twice with three replicates (pots) per treatment. The pathogen was re-isolated from the symptomatic A. cordata leaves, but not from control plants, to fulfill Koch's postulates. The re-isolated pathogen was identified by PCR. Cladosporium cladosporioides has been reported to cause diseases in sweet pepper (Krasnow et al. 2022) and garden peas (Gubler et al. 1999). To our knowledge, this is the first report of C. cladosporioides causing leaf spots of A. cordata in Korea. The identification of this pathogen will help develop strategies to efficiently control the disease in A. cordata.

Keywords: Aralia cordata var. continentalis; Cladosporium cladosporioides; leaf spot; velvety texture.