If the same pigment is found in different tissues in a body, it is natural to assume that the same metabolic pathways are deployed similarly in each tissue. Here we show that this is not the case for ommochromes, the red and orange pigments found in the eyes and wings of butterflies. We tested the expression and function of vermilion and cinnabar, two known fly genes in the ommochrome pathway, in the development of pigments in the eyes and in the wings of Bicyclus anynana butterflies, both traits having reddish/orange pigments. By using fluorescent in-situ hybridization (HCR3.0) we localized the expression of vermilion and cinnabar in the cytoplasm of pigment cells in the ommatidia but observed no clear expression for either gene on larval and pupal wings. We then disrupted the function of both genes, using CRISPR-Cas9, which resulted in the loss of pigment in the eyes but not in the wings. Using thin-layer chromatography and UV-vis spectroscopy we identified the presence of ommochrome and ommochrome precursors in the orange wing scales and in the hemolymph of pupae. We conclude that the wings either synthesize ommochromes locally, with yet unidentified enzymes or incorporate these pigments synthesized elsewhere from the hemolymph. Different metabolic pathways or transport mechanisms, thus, lead to the presence of ommochromes in the wings and eyes of B. anynana butterflies.
© 2023. The Author(s).