Occupational characteristics and epigenetic aging among older adults in the United States

Epigenetics. 2023 Dec;18(1):2218763. doi: 10.1080/15592294.2023.2218763.

Abstract

Occupational characteristics have been studied as risk factors for several age-related diseases and are thought to impact the ageing process, although there has been limited empirical work demonstrating an association between adverse occupational characteristics and accelerated ageing and this prior work has yielded mixed results. We used the 2010 and 2016 waves of the Health and Retirement Study (n = 1,251) to examine the association between occupation categories and self-reported working conditions of American adults at midlife and their subsequent epigenetic ageing as measured through five epigenetic clocks: PCHorvath, PCHannum, PCPhenoAge, PCGrimAge, and DunedinPACE. We found that individuals working in sales/clerical, service, and manual work show evidence of epigenetic age acceleration compared to those working in managerial/professional jobs and that the associations were stronger with second- and third-generation clocks. Individuals reporting high stress and high physical effort at work showed evidence of epigenetic age acceleration only on PCGrimAge and DunedinPACE. Most of these associations were attenuated after adjustment for race/ethnicity, educational attainment, and lifestyle-related risk factors. Sales/clerical work remained significantly associated with PCHorvath and PCHannum, while service work remained significantly associated with PCGrimAge. The results suggest that manual work and occupational physical activity may appear to be risk factors for epigenetic age acceleration through their associations with socioeconomic status, while stress at work may be a risk factor for epigenetic age acceleration through its associations with health behaviours outside of work. Additional work is needed to understand when in the life course and the specific mechanisms through which these associations occur.

Keywords: DNA methylation age; epigenetic age acceleration; epigenetic clock; occupation; pace of ageing; working conditions.

MeSH terms

  • Aged
  • Aging* / genetics
  • DNA Methylation*
  • Epigenesis, Genetic
  • Ethnicity
  • Humans
  • United States / epidemiology