Monodispersed MOF-Modified Nanofibers as Versatile Building Blocks for the Ion Regulations in Safe Lithium-Sulfur Batteries

ACS Appl Mater Interfaces. 2023 Jun 21;15(24):29094-29101. doi: 10.1021/acsami.3c03055. Epub 2023 Jun 11.

Abstract

Lithium-sulfur battery is the most promising candidate for the next generation of rechargeable batteries because of the high energy density. However, the severe shuttle effect of lithium polysulfides (LiPSs) and degradation of the lithium anode during cycling are significant issues that hinder the practical application of lithium-sulfur batteries. Herein, monodispersed metal-organic framework (MOF)-modified nanofibers are prepared as building blocks to construct both a separator and a composite polymer electrolyte in lithium-sulfur systems. This building block possesses the intrinsic advantages of good mechanical properties, thermal stability, and good electrolyte affinity. MOFs, grown continuously on the monodispersed nanofibers, can effectively adsorb LiPSs and play a key role in regulating the nucleation and stripping/plating process of the lithium anode. When assembled into the separator, the symmetric battery remains stable for 2500 h at a current density of 1 mA cm-2, and the lithium-sulfur full cell shows improved electrochemical performance. In order to improve the safety property, the composite polymer electrolyte is prepared with the MOF-modified nanofiber as the filler. The quasi-solid-state symmetric battery remains stable for 3000 h at a current density of 0.1 mA cm-2, and the corresponding lithium-sulfur cell can cycle 800 times at 1 C with a capacity decay rate of only 0.038% per cycle.

Keywords: bacteria cellulose nanofibers; functional separator; metal−organic framework; polysulfides; quasi-solid-state lithium−sulfur battery.