Recently, several mass spectrometry methods have utilized protein structural stability for the quantitative study of protein-ligand engagement. These protein-denaturation approaches, which include thermal proteome profiling (TPP) and stability of proteins from rates of oxidation (SPROX), evaluate ligand-induced denaturation susceptibility changes with a MS-based readout. The different techniques of bottom-up protein-denaturation methods each have their own advantages and challenges. Here, we report the combination of protein-denaturation principles with quantitative cross-linking mass spectrometry using isobaric quantitative protein interaction reporter technologies. This method enables the evaluation of ligand-induced protein engagement through analysis of cross-link relative ratios across chemical denaturation. As a proof of concept, we found ligand-stabilized cross-linked lysine pairs in well-studied bovine serum albumin and ligand bilirubin. These links map to the known binding sites Sudlow Site I and subdomain IB. We propose that protein denaturation and qXL-MS can be combined with similar peptide-level quantification approaches, like SPROX, to increase the coverage information profiled for facilitating protein-ligand engagement efforts.