A complete telomere-to-telomere assembly of the maize genome

Nat Genet. 2023 Jul;55(7):1221-1231. doi: 10.1038/s41588-023-01419-6. Epub 2023 Jun 15.

Abstract

A complete telomere-to-telomere (T2T) finished genome has been the long pursuit of genomic research. Through generating deep coverage ultralong Oxford Nanopore Technology (ONT) and PacBio HiFi reads, we report here a complete genome assembly of maize with each chromosome entirely traversed in a single contig. The 2,178.6 Mb T2T Mo17 genome with a base accuracy of over 99.99% unveiled the structural features of all repetitive regions of the genome. There were several super-long simple-sequence-repeat arrays having consecutive thymine-adenine-guanine (TAG) tri-nucleotide repeats up to 235 kb. The assembly of the entire nucleolar organizer region of the 26.8 Mb array with 2,974 45S rDNA copies revealed the enormously complex patterns of rDNA duplications and transposon insertions. Additionally, complete assemblies of all ten centromeres enabled us to precisely dissect the repeat compositions of both CentC-rich and CentC-poor centromeres. The complete Mo17 genome represents a major step forward in understanding the complexity of the highly recalcitrant repetitive regions of higher plant genomes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Genome, Plant
  • Genomics*
  • High-Throughput Nucleotide Sequencing
  • Repetitive Sequences, Nucleic Acid / genetics
  • Sequence Analysis, DNA
  • Telomere / genetics
  • Zea mays* / genetics