Sigma 1 receptor (Sig1R), a pluripotent modulator of cell survival, is neuroprotective in models of retinal degeneration when activated by the high-affinity, high-specificity ligand (+)-pentazocine ((+)-PTZ). The molecular mechanisms of Sig1R-mediated retinal neuroprotection are under investigation. We previously reported that the antioxidant regulatory transcription factor Nrf2 may be involved in Sig1R-mediated retinal photoreceptor cell (PRC) rescue. Cullin 3 (Cul3) is a component of the Nrf2-Keap1 antioxidant pathway and facilitates Nrf2 ubiquitination. Our earlier transcriptome analysis revealed decreased Cul3 in retinas lacking Sig1R. Here, we asked whether Sig1R activation can modulate Cul3 expression in 661 W cone PRCs. Proximity ligation and co-immunoprecipitation (co-IP) showed that Cul3 resides closely to and co-IPs with Sig1R. Activation of Sig1R using (+)-PTZ significantly increased Cul3 at the gene/protein level; silencing Sig1R decreased Cul3 gene/protein levels. Experiments in which Cul3 was silenced in cells exposed to tBHP resulted in increased oxidative stress, which was not attenuated with Sig1R activation by (+)-PTZ, whereas cells transfected with scrambled siRNA (and incubated with tBHP) responded to (+)-PTZ treatment by decreasing levels of oxidative stress. Assessment of mitochondrial respiration and glycolysis revealed significantly improved maximal respiration, spare capacity and glycolytic capacity in oxidatively-stressed cells transfected with scrambled siRNA and treated with (+)-PTZ, but not in (+)-PTZ treated, oxidatively-stressed cells in which Cul3 had been silenced. The data provide the first evidence that Sig1R co-localizes/interacts with Cul3, a key player in the Nrf2-Keap1 antioxidant pathway. The data suggest that the preservation of mitochondrial respiration/glycolytic function and reduction of oxidative stress observed upon activation of Sig1R occur in part in a Cul3-dependent manner.
Keywords: Cone cells; Cullin 3; Mouse; Pentazocine; Photoreceptor cells; Retinal degeneration; Sigma receptor.
Copyright © 2023 Elsevier Inc. All rights reserved.