Development of TaqMan Probe-Based One-Step RT-qPCR Assay Targeting 2B-NSP Coding Region for Diagnosis of Foot-and-Mouth Disease in India

Curr Microbiol. 2023 Jun 16;80(8):245. doi: 10.1007/s00284-023-03369-y.

Abstract

A one-step TaqMan probe-based RT-qPCR assay in the duplex format simultaneously targeting FMD Virus (FMDV) 2B NSP-coding region and 18S rRNA housekeeping gene was developed and evaluated. The duplex RT-qPCR assay specifically detected FMDV genome in both infected cell culture suspensions and a variety of clinical samples such as FMD-affected tongue/feet epithelium, oral/nasal swabs, milk and oro-pharyngeal fluids. The RT-qPCR assay was found to be highly sensitive, since the assay was 105-fold more sensitive than the traditional FMDV detecting antigen-ELISA (Ag-ELISA) and 102-fold better sensitive than both virus isolation and agarose gel-based RT-multiplex PCR. In addition, the assay could detect up to 100 copies of FMDV genome per reaction. In the epithelial samples (n = 582) collected from the FMD-affected animals, the diagnostic sensitivity was 100% (95% CI 99-100%). Similarly, all the FMDV-negative samples (n = 65) tested were confirmed negative by the new RT-qPCR assay, corresponding to 100% diagnostic specificity (95% CI = 94-100%). Further, the duplex RT-qPCR assay proved to be robust, showing an inter-assay co-efficient of variations ranging from 1.4 to 3.56% for FMDV-2B gene target, and from 2 to 4.12% for 18S rRNA gene target. While analyzing FMDV-infected cell culture suspension, a fairly strong positive correlation (correlation coefficient = 0.85) was observed between 2B-based RT-qPCR and WOAH-approved 5'UTR RT-qPCR assays. Therefore, the one-step RT-qPCR assay developed here with an internal control could be used for rapid, effective, and reliable detection of FMDV in pan-serotypic manner, and has the potential for routine diagnosis of FMDV in high throughput manner.

MeSH terms

  • Animals
  • Foot-and-Mouth Disease Virus* / genetics
  • Foot-and-Mouth Disease* / diagnosis
  • Multiplex Polymerase Chain Reaction
  • Sensitivity and Specificity
  • Serogroup