High-Throughput Exploration of Triple-Cation Perovskites via All-in-One Compositionally-Graded Films

Small. 2023 Oct;19(42):e2301037. doi: 10.1002/smll.202301037. Epub 2023 Jun 17.

Abstract

Many devices heavily rely on combinatorial material optimization. However, new material alloys are classically developed by studying only a fraction of giant chemical space, while many intermediate compositions remain unmade in light of the lack of methods to synthesize gapless material libraries. Here report a high-throughput all-in-one material platform to obtain and study compositionally-tunable alloys from solution is reported. This strategy is applied to make all Csx MAy FAz PbI3 perovskite alloys (MA and FA stand for methylammonium and formamidinium, respectively), in less than 10 min, on a single film, on which 520 unique alloys are then studied. Through stability mapping of all these alloys in air supersaturated with moisture, a range of targeted perovskites are found, which are then chosen to make efficient and stable solar cells in relaxed fabrication conditions, in ambient air. This all-in-one platform provides access to an unprecedented library of compositional space with no unmade alloys, and hence aids in a comprehensive accelerated discovery of efficient energy materials.

Keywords: functional materials; high-throughput; perovskites.