Sustainable agriculture is threatened by salinity stress because of the low yield quality and low crop production. Rhizobacteria that promote plant growth modify physiological and molecular pathways to support plant development and reduce abiotic stresses. The recent study aimed to assess the tolerance capacity and impacts of Bacillus sp. PM31 on the growth, physiological, and molecular responses of maize to salinity stress. In comparison to uninoculated plants, the inoculation of Bacillus sp. PM31 improved the agro-morphological traits [shoot length (6%), root length (22%), plant height (16%), fresh weight (39%), dry weight (29%), leaf area (11%)], chlorophyll [Chl a (17%), Chl b (37%), total chl (22%)], carotenoids (15%), proteins (40%), sugars (43%), relative water (11%), flavonoids (22%), phenols (23%), radical scavenging capacity (13%), and antioxidants. The Bacillus sp. PM31-inoculated plants showed a reduction in the oxidative stress indicators [electrolyte leakage (12%), H2O2 (9%), and MDA (32%)] as compared to uninoculated plants under salinity and increased the level of osmolytes [free amino acids (36%), glycine betaine (17%), proline (11%)]. The enhancement of plant growth under salinity was further validated by the molecular profiling of Bacillus sp. PM31. Moreover, these physiological and molecular mechanisms were accompanied by the upregulation of stress-related genes (APX and SOD). Our study found that Bacillus sp. PM31 has a crucial and substantial role in reducing salinity stress through physiological and molecular processes, which may be used as an alternative approach to boost crop production and yield.
© 2023 The Authors. Published by American Chemical Society.