Modeling the 3D structure and conformational dynamics of very large RNAs using coarse-grained molecular simulations

bioRxiv [Preprint]. 2023 Jun 8:2023.06.06.543892. doi: 10.1101/2023.06.06.543892.

Abstract

We describe a computational approach to building and simulating realistic 3D models of very large RNA molecules (>1000 nucleotides) at a resolution of one "bead" per nucleotide. The method starts with a predicted secondary structure and uses several stages of energy minimization and Brownian dynamics (BD) simulation to build 3D models. A key step in the protocol is the temporary addition of a 4 th spatial dimension that allows all predicted helical elements to become disentangled from each other in an effectively automated way. We then use the resulting 3D models as input to Brownian dynamics simulations that include hydrodynamic interactions (HIs) that allow the diffusive properties of the RNA to be modelled as well as enabling its conformational dynamics to be simulated. To validate the dynamics part of the method, we first show that when applied to small RNAs with known 3D structures the BD-HI simulation models accurately reproduce their experimental hydrodynamic radii (Rh). We then apply the modelling and simulation protocol to a variety of RNAs for which experimental Rh values have been reported ranging in size from 85 to 3569 nucleotides. We show that the 3D models, when used in BD-HI simulations, produce hydrodynamic radii that are usually in good agreement with experimental estimates for RNAs that do not contain tertiary contacts that persist even under very low salt conditions. Finally, we show that sampling of the conformational dynamics of large RNAs on timescales of 100 µs is computationally feasible with BD-HI simulations.

Publication types

  • Preprint