Objective: Here, we report a new method to increase the therapeutic potential of mesenchymal stem/stromal cells (MSCs) for ischemic wound healing. We tested biological effects of MSCs modified with E-selectin, a cell adhesion molecule capable of inducing postnatal neovascularization, on a translational murine model.
Background: Tissue loss significantly worsens the risk of extremity amputation for patients with chronic limb-threatening ischemia. MSC-based therapeutics hold major promise for wound healing and therapeutic angiogenesis, but unmodified MSCs demonstrate only modest benefits.
Methods: Bone marrow cells harvested from FVB/ROSA26Sor mTmG donor mice were transduced with E-selectin-green fluorescent protein (GFP)/AAV-DJ or GFP/AAV-DJ (control). Ischemic wounds were created via a 4 mm punch biopsy in the ipsilateral limb after femoral artery ligation in recipient FVB mice and subsequently injected with phosphate-buffered saline or 1×10 6 donor MSC GFP or MSC E-selectin-GFP . Wound closure was monitored daily for 7 postoperative days, and tissues were harvested for molecular and histologic analysis and immunofluorescence. Whole-body DiI perfusion and confocal microscopy were utilized to evaluate wound angiogenesis.
Results: Unmodified MSCs do not express E-selectin, and MSC E-selectin-GFP gain stronger MSC phenotype yet maintain trilineage differentiation and colony-forming capability. MSC E-selectin-GFP therapy accelerates wound healing compared with MSC GFP and phosphate-buffered saline treatment. Engrafted MSC E-selectin-GFP manifest stronger survival and viability in wounds at postoperative day 7. Ischemic wounds treated with MSC E-selectin-GFP exhibit more abundant collagen deposition and enhanced angiogenic response.
Conclusions: We establish a novel method to potentiate regenerative and proangiogenic capability of MSCs by modification with E-selectin/adeno-associated virus. This innovative therapy carries the potential as a platform worthy of future clinical studies.
Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc.