Abemaciclib is an orally administered, potent, and selective small molecule inhibitor of cyclin-dependent kinases 4 and 6, approved for advanced or metastatic breast cancer. This study aimed to use an exposure-response approach to investigate the effect of abemaciclib and its active metabolites (M2 and M20) on QTc interval and delay in cardiac repolarization at clinically relevant exposures. This was a single-blind, randomized, and placebo-controlled study of ascending doses of abemaciclib. Thirty-five healthy participants were administered a single dose of 200-600 mg abemaciclib. Twelve-lead electrocardiogram tracings and pharmacokinetic samples were collected serially pre- and post-dose. The primary objective was to study the relationship between abemaciclib and its active metabolites (M2 and M20) and QTc interval following ascending oral doses of abemaciclib. The secondary objective included evaluating the safety and tolerability of single ascending doses of abemaciclib in healthy participants. Exposure-response analysis demonstrated that there was no significant relationship between placebo-corrected change from baseline QTcF (ΔΔQTcF), abemaciclib, and metabolite plasma concentrations. Additionally, the ΔΔQTcF slopes of abemaciclib, its metabolites, and total analyte concentrations were not statistically different from zero. Single doses of abemaciclib, up to 400 mg, were well-tolerated by healthy participants; however, at the 600 mg dose (three times the highest registered dose), the frequency and severity of treatment-related gastrointestinal events (primarily diarrhea, nausea, and vomiting) increased. In conclusion, single doses of abemaciclib, up to 400 mg, had no statistically or clinically relevant effects on QTc, and abemaciclib was well tolerated up to a dose of 400 mg in this study.
© 2023 Eli Lilly and Company. Clinical and Translational Science published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.