Non-alcoholic fatty liver disease (NAFLD) has no approved pharmacological treatments. Sodium-glucose cotransporter (SGLT)-1 is a glucose transporter that mediates small intestinal glucose absorption. We evaluated the impact of genetically proxied SGLT-1 inhibition (SGLT-1i) on serum liver transaminases and NAFLD risk. We used a missense variant, rs17683430, in the SLC5A1 gene (encoding SGLT1) associated with HbA1c in a genome-wide association study (n = 344 182) to proxy SGLT-1i. Outcome genetic data comprised 1483 NAFLD cases and 17 781 controls. Genetically proxied SGLT-1i was associated with reduced NAFLD risk (OR 0.36; 95%CI 0.15, 0.87; P = .023) per 1 mmol/mol HbA1c reduction, and with reductions in liver enzymes (alanine transaminase, aspartate transaminase, gamma-glutamyl transferase). Genetically proxied HbA1c, not specifically via SGLT-1i, was not associated with NAFLD risk. Colocalisation did not demonstrate genetic confounding. Overall, genetically proxied SGLT-1i is associated with improved liver health, this may be underpinned by SGLT-1-specific mechanisms. Clinical trials should evaluate the impact of SGLT-1/2 inhibitors on the prevention and treatment of NAFLD.
Keywords: NAFLD; SGLT1; glycated hemoglobin; liver transaminases; sodium-glucose cotransporter; type 2 diabetes.
© The Author(s) 2023. Published by Oxford University Press on behalf of European Society of Endocrinology.