A Different Perspective on the Characterization of a New Degradation Product of Flibanserin With HPLC-DAD-ESI-IT-TOF-MSn and Its Pharmaceutical Formulation Analysis With Inter-Laboratory Comparison

J AOAC Int. 2023 Sep 1;106(5):1145-1153. doi: 10.1093/jaoacint/qsad074.

Abstract

Background: Flibanserin (FLB) was first synthesized as an antidepressant drug; however, due to its enhancing effects on sexual activity, it was approved for treatment of hypoactive sexual desire disorder in women in 2015.

Objective: The aim of this study was to develop a new and fully validated HPLC method for analysis of FLB in pharmaceutical formulations besides its degradation products, and identification of possible formation mechanisms by using HPLC-DAD-ESI-IT-TOF-MSn.

Method: The HPLC separation was achieved in a Supelco Ascentis® Express series phenyl hexyl column (100 × 4.6 mm, ID 2.7 µm). The mobile phase was acetonitrile-ammonium acetate solution (50:50, v/v, 10 mM, pH 5.4) mixture, which was pumped at the rate of 0.5 mL/min. Chromatography, detection, and structural identification was performed by using a LCMS-IT-TOF instrument (Shimadzu, Japan).

Results: 1-(2-(4-(3-hydroxy-5-(trifluoromethyl)phenyl)piperazine-1-yl)ethyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one is proposed as a novel degradation product, with a mass of 407.1695 and a formula of C20H21F3N4O2 with a margin of error about 0.001 ppm. The developed method is applicable with 98% accuracy within the 2.5-50.0 µg/mL range. The LOD and LOQ were about 500 ng/mL and 1.50 µg/mL, respectively. The transferability and variation between laboratories were tested by inter-laboratory comparison and evaluated with one-way analysis of variance.

Conclusions: A novel FLB degradation product, which was produced under oxidative forced degradation conditions was observed and identified for the first time; in addition, the formation kinetics of the degradation product besides decomposition of FLB was studied. Furthermore, an inter-laboratory comparison was carried out, and application of the proposed method on a pseudo Addyi® (Sprout Pharmaceuticals, Inc.) sample was tested using both instrument configurations.

Highlights: A novel stability-indicating assay method was developed and fully validated according to the International Council on Harmonization (Q2) R1 for the analysis of FLB in the pharmaceutical preparations. A new degradation product was identified in the oxidative forced degradation condition and characterized using HPLC-DAD-ESI-IT-TOF-MS3. Moreover, the possible mechanism and the formation kinetic of the degradation product were revealed. In addition, the developed method was transferred to another LC-PDA instrument for inter-laboratory comparison. Finally, the current method was applied to a pseudo formulation of Addy in both instruments, and ANOVA was applied for evaluation.

Publication types

  • Comparative Study

MeSH terms

  • Benzimidazoles* / analysis
  • Chromatography, High Pressure Liquid / methods
  • Drug Compounding
  • Drug Stability
  • Female
  • Humans
  • Oxidation-Reduction

Substances

  • Benzimidazoles
  • flibanserin